- Search
- usgcrp-climate-human-health-assessment-2016 report
- publications
- contributors
reference : Increasing contaminant burdens in an arctic fish, Burbot (Lota lota), in a warming climate
JSON YAML text HTML Turtle N-Triples JSON Triples RDF+XML RDF+JSON Graphviz SVG
/report/usgcrp-climate-human-health-assessment-2016/chapter/food-safety-nutrition-and-distribution/reference/67bf0866-1dd9-49ce-a909-848cc3f69a77
/report/usgcrp-climate-human-health-assessment-2016/chapter/food-safety-nutrition-and-distribution/reference/67bf0866-1dd9-49ce-a909-848cc3f69a77
This bibliographic record appears in :
Reference URIs:
Reference URIs:
- /reference/67bf0866-1dd9-49ce-a909-848cc3f69a77
- /report/usgcrp-climate-human-health-assessment-2016/chapter/food-safety-nutrition-and-distribution/finding/chemical-contaminants-in-the-food-chain/reference/67bf0866-1dd9-49ce-a909-848cc3f69a77
- /report/usgcrp-climate-human-health-assessment-2016/chapter/water-related-illnesses/reference/67bf0866-1dd9-49ce-a909-848cc3f69a77
- /report/usgcrp-climate-human-health-assessment-2016/chapter/food-safety-nutrition-and-distribution/reference/67bf0866-1dd9-49ce-a909-848cc3f69a77
- /report/usgcrp-climate-human-health-assessment-2016/reference/67bf0866-1dd9-49ce-a909-848cc3f69a77
Publication/contributor :
article
reftype | Journal Article |
Abstract | The temporal patterns of mercury (Hg), polychlorinated biphenyls (PCBs), and other contaminants in Arctic aquatic biota are usually attributed to changing atmospheric sources. However, climate variability and change is another means of altering contaminant fate and bioavailability. We show here that the concentrations of Hg and PCBs in Mackenzie River burbot ( Lota lota ), a top predator fish and important staple food for northern Canadian communities, have increased significantly over the last 25 years despite falling or stable atmospheric concentrations, suggesting that environmental processes subsequent to atmospheric transport are responsible. Using a dated sediment core from a tributary lake near the Mackenzie River sampling site, we show that variations in Hg concentrations downcore are strongly associated with labile, algal-derived organic matter (OM). Strong temporal correlations between increasing primary productivity and biotic Hg and PCBs as reflected by burbot suggest that warming temperatures and reduced ice cover may lead to increased exposure to these contaminants in high trophic level Arctic freshwater biota. |
Author | Carrie, J.; Wang, F.; Sanei, H.; Macdonald, R. W.; Outridge, P. M.; Stern, G. A. |
DOI | 10.1021/es902582y |
Date | Jan 1 |
ISSN | 1520-5851 |
Issue | 1 |
Journal | Environmental Science & Technology |
Keywords | Animals; Arctic Regions; *Climate; Eukaryota/metabolism; Fishes/*metabolism; Hot Temperature; Mercury/*metabolism; Polychlorinated Biphenyls/*metabolism; Water Pollutants, Chemical/*metabolism |
Language | eng |
Notes | Carrie, J Wang, F Sanei, H Macdonald, R W Outridge, P M Stern, G A Journal Article Research Support, Non-U.S. Gov't United States Environ Sci Technol. 2010 Jan 1;44(1):316-22. doi: 10.1021/es902582y. |
Pages | 316-322 |
Title | Increasing contaminant burdens in an arctic fish, Burbot (Lota lota), in a warming climate |
Volume | 44 |
Year | 2010 |
.reference_type | 0 |
_record_number | 19047 |
_uuid | 67bf0866-1dd9-49ce-a909-848cc3f69a77 |